Interferência da utilização de diferentes metodologias laboratoriais no sinal isotópico de oxigênio em testas de *Globigerinoides ruber*

Fabio Radomille de Santana¹; Felipe Antonio de Lima Toledo²

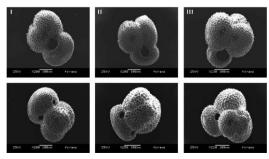
e-mail: radomille@gmail.com

Instituto Oceanográfico / LaPAS - Universidade de São Paulo

Endereço Postal: Rua Dr. Celestino, 144. Ap. 803. Centro, Niterói. RJ. CEP: 24020-091.

Resumo

Os dados de sinal isotópico de oxigênio são ferramentas estratigráficas bastante utilizadas por inúmeros estudos e com diversas aplicações, por isso devem ser aplicados os melhores métodos e menores interferentes para gerarem resultados mais precisos e confiáveis. Para investigar as possíveis interferências dos procedimentos laboratoriais sobre dados de δ^{18} O, efetuou-se medidas isotópicas com testas de foraminíferos planctônicos (Globigerinoides ruber) sob o efeito de diferentes temperaturas de secagem na presença de água destilada apenas, ou na presença de compostos orgânicos separadamente ou em combinações. A secagem em estufa com temperaturas acima de 60°C apresentou características consideradas interferentes no sinal de δ^{18} O. O uso de Formaldeído diluído a 4% como fixante dificultou a lavagem a úmido, formando aglomerados, a ponto de fragmentar as testas de organismos carbonáticos. O corante Rosa de Bengala dificultou a identificação das testas de G. ruber triadas para análise e a combinação deste com outros compostos orgânicos provocou desvios impróprios nos sinais de δ^{18} O para estudo paleoceanográficos. Recomenda-se a manutenção da lavagem a úmido com secagem em temperaturas inferiores a 50°C, a seleção de 35 ou mais testas de G. ruber e a maior quantidade de réplicas possíveis para tornar a análise isotópica mais precisa.


Palavras-chave: Isótopos de oxigênio, interferência isotópica, foraminíferos, temperatura e compostos orgânicos.

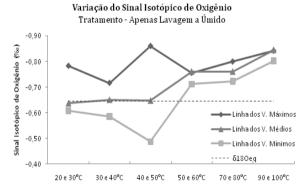
Introdução

Os dados de sinal isotópico de oxigênio (δ^{18} O) são ferramentas estratigráficas bastante utilizadas por inúmeros estudos e com diversas aplicações, sejam elas para cronoestratigrafia, paleotemperaturas e estimativas de cobertura de gelo. Por isso devem ser aplicados os melhores métodos e menores interferentes para que impliquem em resultados mais precisos e confiáveis. Para isso, deve-se ter o absoluto controle dos fatores que influenciam os sinais isotópicos de oxigênio tanto na natureza, quanto na manipulação laboratorial das amostras carbonáticas. Dessa maneira, o presente estudo pretendeu determinar fatores, ou combinações destes, que interferem no sinal isotópico de oxigênio em testas de foraminíferos planctônicos da espécie *Globigerinoides ruber* de sedimentos marinhos.

Material e Métodos

- Escolha das Amostras Principais separação em Amostra S (Shallow) e D (Deep);
- Fixação com formaldeído diluído a 4% da Amostra Principal D;
- Pesagem de aproximadamente 10g para cada subamostra, feitas tréplicas para cada intervalo de temperatura de secagem. Identificação de acordo com o procedimento a ser submetido:
 - ► Amostra S Lavagem a úmido. Secagem em diferentes temperaturas.
 - ► Amostra D Aplicação de Rosa de Bengala (apenas para tratamentos de mistura com Formol + Rosa de Bengala (FR) e Formol + Rosa de Bengala + Tricloroetileno (FRT)); Lavagem a úmido; Flotação com Tricloroetileno (apenas para tratamentos de mistura com Formol + Tricloroetileno e Formol + Rosa de Bengala + Tricloroetileno (FRT)). Secagem em diferentes temperaturas.
- Triagem das subamostras e seleção de 35 testas da espécie *Globigerinoides ruber* morfotipo sensu lato (s.l), ou morfotipo II (**Figura 1**) (WANG, 2000) por subamostra.

Figura 1: Espécimes representativas dos três morfotipos [I (s.s), II (s.l) (WANG, 2000) e III ("kummerform") (HETCH, 1974)] de *Globigerinoides ruber* (d'Orbigny) distinguidas no estudo realizado por LÖWEMARK *et al.* (2005).


 Análise isotópica em espectrômetro de massa do modelo GV Isoprime no modo Dual Inlet no Stable Isotope Laboratory Earth and Planetary Sciences da Universidade da Califórnia, Santa Barbara.

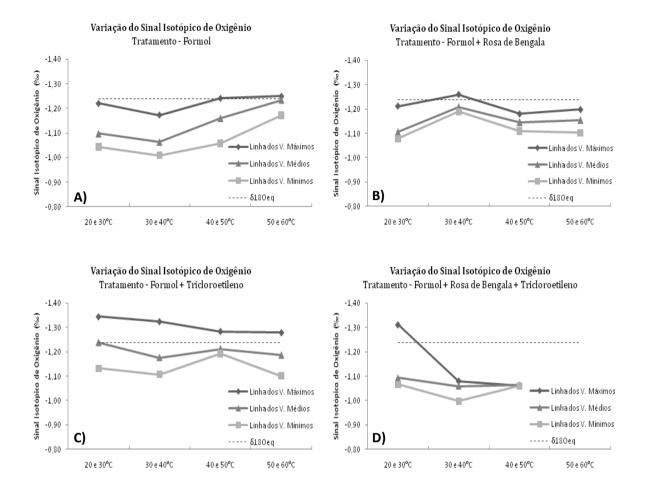
Resultados e Discussão

A partir dos dados coletados *in-situ* pelos cruzeiros do Projeto MAPEM e dos dados do WOA05 (ANTONOV *et al.*, 2006; LOCARNINI *et al.*, 2006), foi possível estimar: $\mathbf{1}$ – os valores de $\delta^{18}O_{w}$ (V-SMOW) utilizando os dados de valor médio da salinidade durante o verão de 2002 (CORRÊA *et al.*, 2009) e durante o ano de 2005 (WOA, 2005); $\mathbf{2}$ - os valores de equilíbrio da calcita ($\delta^{18}O_{eq}$, V-SMOW) para a massa de água de interesse, Água Tropical (AT - superficial) utilizando o valor médio da temperatura do mesmo conjunto de dados, segundo a equação de paleotemperatura de MULITZA *et al.* (2003) e $\mathbf{3}$ - os valores de equilíbrio da calcita, $\delta^{18}O_{eq}$ (V-PDB), os quais foram convertidos a partir dos dados calculados para $\delta^{18}O_{eq}$ (V-SMOW) segundo a equação de conversão de HUT (1987).

Tabela 1: Valores médios de salinidade e temperatura referentes à Água Tropical, de acordo com dados obtidos no WOA05 (ANTONOV *et al.*, 2006; LOCARNINI *et al.*, 2006) e nos perfis com CTD do Projeto MAPEM para as duas posições das amostras principais S (200m) e D (900m) e os respectivos $\delta^{18}O_w$ $\delta^{18}O_{eq}$ (V-SMOW) e $\delta^{18}O_{eq}$ (V-PDB) calculados.

Valores Médios de Temperatura e Salinidade Superficiais (AT – Água Tropical)								
Estação	Temperatura (°C)	Salinidade	$\delta^{18}O_w$ (‰)	$\delta^{18}O_{eq}$ (V-SMOW) (‰)	δ ¹⁸ O _{eq} (V-PDB) (‰)			
Amostra S – 200m	21,62	36,64	1,29	-0,38	-0,65			
Amostra D – 900m	23,58	36,32	1,12	-0.97	-1,24			
WOA05	23,47	36,82	1,38	-0,69	-0,96			

Figura 2: Gráfico da variação do sinal isotópico de oxigênio nos diferentes tratamentos para a Amostra S.


Tabela 2: Teste de Tukey para as subamostras da Amostra S entre diferentes temperaturas de secagem.

Amostra S – Sinal Isotópico de Oxigênio Teste de Tukey					
Tratamentos	Isótopos de Oxigênio (‰)				
20-30°C	$-0.67667^{x} \pm 0.0939^{y}$ (A)				
30-40°C	$-0.65000^{x} \pm 0.0656^{y}$ (A)				
40-50°C	$-0,66667^{x} \pm 0,1872^{y}$ (A)				
50-60°C	$-0.74333^{x} \pm 0.0269^{y}$ (A)				
70-80°C	$-0.76000^{x} \pm 0.0383^{y}$ (A)				
90-100°C	$-0.82667^{x} \pm 0.0238^{y}$ (A)				
DMS	0,2666				

^xMédia (n=3). ^yDesvio Padrão.

Médias seguidas pela mesma letra maiúscula na coluna não diferem entre si (Tukey, p<0,05).

DMS= Diferença Mínima Significativa

Figura 3: Gráficos da variação do sinal isotópico de oxigênio nos diferentes intervalos de temperatura para o tratamento [A) Formaldeído]; [B) Formaldeído + Rosa de Bengala]; [C) Formaldeído + Tricloroetileno] e [D) Formaldeído + Rosa de Bengala + Tricloroetileno] para a Amostra D.

Tabela 3: Teste de Tukey para as subamostras da Amostra D entre diferentes temperaturas de secagem e entre diferentes tratamentos, excluindo os dados perdidos das subamostras FRT60.

	Amostra D – Sinal Isotópico de Oxigênio – Teste de Tukey								
Tratamentos	\mathbf{F}	FR	FT	FRT	DMS				
20-30°C	$-1,120^{x} \pm 0,091^{y}(\mathbf{A}, \mathbf{a})$	$-1,133^{x} \pm 0,071^{y}(\mathbf{A}, \mathbf{a})$	$-1,240^{x} \pm 0,107^{y}(\mathbf{A}, \mathbf{a})$	$-1,157^{x} \pm 0,135^{y} (\mathbf{A}, \mathbf{a})$	0,2707				
30-40°C	$-1,080^{x} \pm 0,083^{y}(\mathbf{A}, \mathbf{a})$	$-1,220^{x} \pm 0,037^{y}(\mathbf{A}, \mathbf{a})$	$-1,203^{x} \pm 0,111^{y}(\mathbf{A}, \mathbf{a})$	$-1,047^{x} \pm 0,043^{y}(\mathbf{A}, \mathbf{a})$	0,1902				
40-50°C	$-1,153^{x} \pm 0,092^{y}(\mathbf{AB}, \mathbf{a})$	$-1,147^{x} \pm 0,035^{y}(\mathbf{AB},\mathbf{a})$	$-1,227^{x} \pm 0,048^{y}(\mathbf{A}, \mathbf{a})$	$-1,060^{x} \pm 0,089^{y}(\mathbf{A}, \mathbf{a})$	0,1408				
50-60°C	$-1,217^{x} \pm 0,041^{y}(\mathbf{A}, \mathbf{a})$	$-1,150^{x} \pm 0,048^{y}(\mathbf{B}, \mathbf{a})$	$-1,190^{x} \pm 0,089^{y}(\mathbf{AB}, \mathbf{a})$	-	0,0602				
DMS	0,2066	0,1107	0,2099	0,2018	-				

^xMédia (n=3). ^yDesvio Padrão.

 $F = Formaldeído + Rosa \ de \ Bengala; \ FT = Formaldeído + Tricloroetileno; \ FRT = Formaldeído + Rosa \ de \ Bengala + Tricloroetileno.$

DMS= Diferença Mínima Significativa.

Médias seguidas pela mesma letra maiúscula na linha e pela mesma letra minúscula na coluna não diferem entre si (Tukey, p<0.05).

As amostras utilizadas constituíram de sedimento marinho hemipelágico rico em organismos carbonáticos. A secagem em estufa com temperaturas acima de 60° C apresentou características problemáticas na estrutura das carapaças restantes e também consideradas interferentes no sinal de δ^{18} O das subamostras. O uso de Formaldeído diluído a 4% como fixante provocou floculação do sedimento fino e dificultou a lavagem a úmido a ponto de

fragmentar as testas de organismos carbonáticos. O corante Rosa de Bengala dificultou a identificação das testas de G. ruber selecionadas para análise e a combinação deste com outros compostos orgânicos provocou desvios nos sinais de δ^{18} O considerados impróprios para estudo paleoceanográficos. Considerando a Diferença Mínima Significativa (DMS) obtida pelo tratamento estatístico (ANOVA), se observou que todos os valores encontraramse com magnitudes muito elevadas se levarmos em conta a precisão do método de isótopos estáveis para o uso paleoceanográfico. Nessa ordem de grandeza, as variações entre réplicas do mesmo tratamento gerariam desvio de interpretação de aproximadamente 2,3°C para paleotemperaturas (nesse caso, de águas superficiais).

Conclusão

Levando em consideração os resultados estatísticos (DMS) e o efeito encontrado no δ^{18} O das subamostras secadas acima de 60°C e naquelas tratadas com compostos orgânicos, concluísse que se deve manter o método de lavagem a úmido com secagem em temperaturas inferiores a 50°C, a seleção de 35 ou mais testas de *G. ruber* e a maior quantidade de réplicas possíveis para tornar a análise isotópica mais precisa.

Referências Bibliográficas

ANTONOV, J. L.; LOCARNINI, R. A.; BOYER, T. P.; MISHONOV, A. V.; GARCIA, H. E.. World Ocean Atlas, 2005, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS G2, U.S. Government Printing Office, Washington, D. C.. 2006. 182pp.

CORRÊA, I. C. S.; TOLDO Jr., E. E.; TOLEDO, F. A. L.. Seafloor geological impacts associated with drilling disturbance. Elsevier. Deep Sea Research II. v.56. 2009. 4-11p.

HETCH, A.D.. Intraespecific variations in Recent *Globigerinoides ruber* and *Globigerinoides trilobus* and their application to paleoenvironmental analysis. Journal of Paleontology. v.48(6). 1974. 1217-1234p.

HUT, G.. Consultants group meeting on the stable isotope reference samples for geochemical and hydrological investigations, Rep, to Dir. Ge., Int. At. Energy Agency, Vienna. 1987. 42pp.

LOCARNINI, R. A.; MISHONOV, A. V.; ANTONOV, J. I.; BOYER, T. P.; GARCIA, H. E. World Ocean Atlas, 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS G1, U.S. Government Printing Office, Washington, D. C.. 2006. 182 p.

LÖWEMARK, L.; HONG, W.L.; YUI, T.F.; HUNG, G.W.. A test of different factors influencing the isotopic signal of planktonic foraminifera in surface sediments from the northern South China Sea. Marine Micropaleontology. v.55/1–2. 2005. 49–62p.

MULITZA, S.; DONNER, B.; FISCHER, G.; PAUL, A.; PATZOLD, J.; RUHLEMANN, C.; SEGL, M.. The South Atlantic oxygen isotope record of planktonic foraminifera. In: The South Atlantic in the Late Quaternary: Reconstruction of Material budgets and current systems. WEFER, G.; MULITZA, S.; RATMEYER, V. (ed.). Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. 2003. 121-142p.

WANG, L.J.. Isotopic signals in two morphotypes of *Globigerinoides ruber* (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle. Palaeogeography, Palaeoclimatology, Palaeoecology. v.161 (3–4). 2000. 381–394p.